Mapping high-growth phenotypes in the flux space of microbial metabolism.

نویسندگان

  • Oriol Güell
  • Francesco Alessandro Massucci
  • Francesc Font-Clos
  • Francesc Sagués
  • M Ángeles Serrano
چکیده

Experimental and empirical observations on cell metabolism cannot be understood as a whole without their integration into a consistent systematic framework. However, the characterization of metabolic flux phenotypes is typically reduced to the study of a single optimal state, such as maximum biomass yield that is by far the most common assumption. Here, we confront optimal growth solutions to the whole set of feasible flux phenotypes (FFPs), which provides a benchmark to assess the likelihood of optimal and high-growth states and their agreement with experimental results. In addition, FFP maps are able to uncover metabolic behaviours, such as aerobic fermentation accompanying exponential growth on sugars at nutrient excess conditions, that are unreachable using standard models based on optimality principles. The information content of the full FFP space provides us with a map to explore and evaluate metabolic behaviour and capabilities, and so it opens new avenues for biotechnological and biomedical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis

Background Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium characterized to date. Its genome was found to be 99.8% identical to S. elongatus 7942 yet it grows twice as fast. Current genome-to-phenome mapping is still poorly performed for non-model organisms. Even for species with identical genomes, cell phenotypes can be strikingly different. To understand Synechococcus ...

متن کامل

Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters

Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from str...

متن کامل

Gene Knockout Identification Using an Extension of Bees Hill Flux Balance Analysis

Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the ...

متن کامل

Differential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization

Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the me...

متن کامل

Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.

The elucidation of organism-scale metabolic networks necessitates the development of integrative methods to analyze and interpret the systemic properties of cellular metabolism. A shift in emphasis from single metabolic reactions to systemically defined pathways is one consequence of such an integrative analysis of metabolic systems. The constraints of systemic stoichiometry, and limited thermo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 12 110  شماره 

صفحات  -

تاریخ انتشار 2015